Chem. Ber. 110, 1159-1166 (1977)

Verdrillte Oxalsäurederivate Die Kristall- und Molekülstruktur von N,N,N',N'-Tetramethyloxamid und -monothiooxamid

Gunadi Adiwidjaja und Jürgen Voß*

Mineralogisch-Petrographisches Institut der Universität Hamburg, Grindelallee 48, D-2000 Hamburg 13, und

Institut für Organische Chemie und Biochemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13*

Eingegangen am 23. Juni 1976

Die Strukturen der Titelsubstanzen (2 und 3) wurden röntgenographisch bestimmt und bis zu *R*-Werten von 0.065 (2) bzw. 0.057 (3) verfeinert. 2 kristallisiert in der Raumgruppe C2/c, 3 in der Raumgruppe $P2_1/c$. – 2 liegt im Kristall in einer Konfiguration vor, bei der die beiden Molekülhälften um 71.4° gegeneinander verdrillt sind; bei 3 beträgt dieser Winkel 87.4°.

Twisted Oxalic Acid Derivatives

The Crystal and Molecular Structure of N, N, N', N'-Tetramethyloxamide and -monothiooxamide

The structures of the title compounds (2 and 3) have been determined from X-ray data, and refined to R = 0.065 (2) and 0.057 (3) respectively. 2 crystallizes in the space group C2/c, 3 in the space group $P2_1/c$. — In the crystal 2 exhibits a configuration in which the two halves of the molecule are twisted by 71.4°. This angle amounts to 87.4° in 3.

Oxalsäurederivate weisen im Kristall in der Regel ein planares X_2C-CX_2 -Gerüst auf^{1,2)}. Dies gilt auch für diejenigen Amide^{3,4)} und Thioamide^{5,6)}, die höchstens einen Substituenten an jedem Stickstoffatom tragen, so daß die Ausbildung einer durch intramolekulare Wasserstoffbrücken⁷⁾ begünstigten Z/E/Z/-Konfiguration möglich ist, in der keine sterische Hinderung auftritt. N, N-Dimethyldithiooxamid (1) besitzt dagegen kein ebenes Molekülgerüst⁸⁾.

¹⁾ H. Küppers, Acta Crystallogr., Sect. B 29, 318 (1973).

- ⁶⁾ W. Schäm, Diplomarbeit, Univ. Hamburg 1974.
- ⁷⁾ H. O. Desseyn, W. A. Jacob und M. A. Herman, Spectrochim. Acta, Part A 28, 1329 (1972).
- ⁸⁾ A. Christensen, H. J. Geise und B. J. Van der Veken, Bull. Soc. Chim. Belg. 84, 1173 (1975).

²⁾ G. Adiwidjaja und J. Voβ, Chem. Ber. 109, 761 (1976).

³⁾ E. M. Ayerst und J. R. C. Duke, Acta Crystallogr. 7, 588 (1954).

⁴⁾ H. Widjaja, Diplomarbeit, Univ. Hamburg 1973.

⁵⁾ P. J. Wheatley, J. Chem. Soc. 1965, 396.

Um die Frage zu klären, ob auch die Nachbarschaft zwischen dem kleineren Sauerstoffatom und der Dimethylaminogruppe eine Störung der ebenen Konfiguration hervorruft, haben wir N, N, N', N'-Tetramethyloxamid (2) und -monothiooxamid (3) röntgenographisch untersucht.

Experimentelles, Gitterkonstanten, Raumgruppe

 2^{91} und 3^{101} sind gut kristallisierende Verbindungen, die wir nach Literaturangaben synthetisiert haben. Aus Schwenk-, Weißenberg- und Präzessionsaufnahmen ließen sich vorläufige Gitterkonstanten und die möglichen Raumgruppen ermitteln. Bei 2 kamen Cc oder C2/c in Frage. Obwohl die Intensitätsstatistiken für diese Substanz keine eindeutigen Hinweise gaben, wurde zunächst die erste, nicht zentrosymmetrische Raumgruppe gewählt, weil die auf vier Moleküle in der Elementarzelle berechnete Dichte mit der tatsächlichen übereinstimmte und angenommen wurde, daß das Molekül kein Symmetrieelement besitzt. Die azentrisch bestimmte Kristallstruktur von 2 zeigte jedoch, daß sich die beiden Molekülhälften wegen der Kristallsymmetrie ineinander transformieren ließen (vgl. unten). Die richtige Raumgruppe von 2 ist demnach C2/c.

Die Raumgruppe von 3, $P2_1/c$, ist durch die in den Aufnahmen gefundene Symmetrie und die Auslöschungen der Reflexe eindeutig bestimmt.

Die Verfeinerung der Gitterkonstanten erfolgte mit Hilfe des Rechenprogramms von Eck¹¹ anhand der mit einem Einkristalldiffraktometer (AED, Fa. Siemens) durch $\vartheta/2\vartheta$ -Abtastung (Cu_{Ka}-Strahlung) gewonnenen ϑ -Maxima.

Es ergaben sich folgende Kristalldaten:

2	a = 9.304(1) Å	$V = 816.1 \text{ Å}^3$
	b = 9.051(1) Å	$d_{\rm x}=1.18~{\rm g}\cdot{\rm cm}^{-3}$
	c = 10.517(1) Å	$\mu(Cu_{K\alpha}) = 7.47 \text{ cm}^{-1}$
	$\beta = 112.84(1)^{\circ}$	Raumgruppe = $C2/c$; $Z = 4$
3	$a = 6.371 (2) \text{\AA}$	$V = 863.6 \text{ Å}^3$
	b = 11.600 (2) Å	$d_{\rm x}=1.24~{\rm g}\cdot{\rm cm}^{-1}$
	c = 13.591 (2) Å	$\mu(Cu_{K\alpha}) = 27.81 \text{ cm}^{-1}$
	$\beta = 120.71 (1)^{\circ}$	Raumgruppe = $P2_1/c$; $Z = 4$

Die Intensitätsmessungen wurden an einem 2-Kristall der Größe $0.22 \times 0.31 \times 0.32 \text{ mm}^3$ und einem 3-Kristall der Größe $0.25 \times 0.47 \times 0.34 \text{ mm}^3$ mit dem oben genannten Einkristalldiffraktometer unter Verwendung von Cu_{Ka}-Strahlung (Graphitmonochromator) ausgeführt. Die Auswertung der gemessenen Reflexe geschah mit dem Rechenprogramm von Eck¹¹. Außer den üblichen Lorentz-Polarisationskorrekturen wurde eine Absorptionskorrektur durchgeführt.

Nach der Reduktion standen 764 symmetrieunabhängige Strukturamplituden für 2 und 1460 für 3 zur Verfügung, welche alle zur Verfeinerung der Strukturen verwendet wurden.

Bestimmung und Verfeinerung der Struktur

Die Bestimmung der beiden Kristallstrukturen erfolgte unter Verwendung der Direktmethode mit Hilfe des Programmsystems von Sheldrick¹²⁾ für die als nicht zentrosymmetrisch angenommene Substanz 2 und des Rechenprogramms MULTAN¹³⁾ für 3. Mit Hilfe der anschließend berechneten E-maps ließen sich die Lagen aller Atome außer Wasserstoff bestimmen. Die so

⁹⁾ J. Voβ, Tetrahedron 28, 2627 (1972).

¹⁰⁾ J. Voβ, Liebigs Ann. Chem. 1974, 1231.

¹¹⁾ J. Eck, unveröffentlichte Programme, Hamburg 1970.

¹²⁾ G. Sheldrick, Programs for Crystal Structure Determination, Cambridge 1975.

¹³⁾ G. Germain, P. Main und M. M. Woolfson, Acta Crystallogr., Sect. A 27, 368 (1971).

1977

Tab. 1. Atomparameter in der 2-Kristallstruktur. Die Parameter sind bis auf die Koeffizienten B der Temperaturfaktoren von Wasserstoff-Atomen mit 10⁴ multipliziert. Die in Klammern angeführten Standardabweichungen beziehen sich auf die letzte Stelle des zugehörigen Parameterwertes. Die β -Werte sind auf den folgenden Ausdruck bezogen: exp $[-(h^2\beta_{11} + k^2\beta_{22} + l^2\beta_{33} + 2hk\beta_{12} + 2hl\beta_{13} + 2kl\beta_{23})]$

Atom	×	У	2	β ₁₁	β ₂₂	^β 33	β ₁₂	β ₁₃	^β 23
c,	754(3)	3248(3)	2367(2)	142(4)	145(3)	121(3)	-19(3)	35(3)	- 1(3)
c2	3498(4)	3794(5)	3156(4)	132(4)	288(7)	170(5)	-14(4)	60(4)	-20(5)
c3	1954(5)	4830(5)	4404(4)	223(6)	249(6)	153(4)	79(5)	89(4)	64(4)
N,	1974(2)	3947(2)	3251(2)	135(3)	183(3)	122(3)	14(2)	49(2)	8(2)
°1	771(2)	2517(2)	1389(2)	188(3)	260(4)	181(3)	-29(3)	49(2)	84(3)
				В					
^н 21	1914(58)	4242(58)	5058(53)	12(2)					
^H 22	964(52)	5275(50)	4213(44)	9(1)					
H ₂ 3	2714(56)	5602(53)	4693(47)	10(1)					
H ₃₁	3413(51)	3852(53)	2319(51)	10(2)					
H32	3964(61)	2928(58)	3515(53)	11(2)					
H33	4229(68)	4276(63)	3746(59)	14(2)					C 281/76 Tab

Tab. 2. Atomparameter in der 3-Kristallstruktur (vgl. Legende zu Tab. 1)

Atom	x	у	2	β ₁₁	β ₂₂	^β 33	[₿] 12	⁸ 13	^β 23
s	7409(1)	1807(1)	4274(1)	352(3)	117(1)	58(1)	-17(1)	52(1)	-14(1)
0	9128(3)	977(1)	1153(2)	389(6)	73(1)	107(2)	-25(2)	106(3)	1(1)
N 1	9548(3)	1379(1)	6508(1)	283(6)	63(1)	67(1)	1(2)	63(2)	- 3(1)
N2	2443(3)	1568(2)	1088(2)	292(7)	91(2)	82(2)	19(2)	77(3)	- 4(1)
с ₁	9168(3)	2082(2)	5669(2)	219(6)	73(2)	63(1)	10(2)	61(2)	- 5(1)
°2	290(4)	1733(2)	1066(2)	283(7)	67(2)	59(2)	-12(2)	61(3)	- 5(1)
с ,	1008(5)	1710(2)	7719(2)	374(8)	83(2)	62(2)	- 2(3)	56(3)	6(1)
c4	8400(6)	244(2)	6277(3)	496(12)	72(2)	102(3)	-38(4)	92(4)	- 6(2)
с ₅	3557(6)	429(3)	1351(3)	441(11)	114(3)	103(2)	75(5)	82(4)	-17(2)
°6	3839(5)	2500(3)	969(3)	299(9)	154(4)	111(3)	- 6(4)	112(4)	-15(2)
Atom	x	у	z	В					
^H 31	9257(83)	1939(39)	7876(39)	7(1)					
H32	1976(77)	2392(36)	7886(39)	6(1)					
^H 33	2018(79)	1117(42)	8194(38)	7(1)					
н ₄₁	6789(81)	369(37)	6169(40)	6(1)					
^н 42	8446(81)	- 90(43)	5606(43)	7(1)					
^H 43	9056(85)	- 162(40)	7040(43)	7(1)					
H ₅₁	2539(78)	- 98(39)	1344(39)	6(1)					
^H 52	4322(80)	308(45)	995(42)	7(1)					
н ₅₃	4990(71)	505(37)	2289(3 8)	7(1)					
^н 61	2532(84)	3146(36)	543(41)	6(1)					
H62	3760(72)	2330(34)	169(37)	5(1)					
^H 63	5354(89)	2654(39)	1619(43)	7(1)				C	201/76_Tab 2

ermittelten Atomlagen von 2 zeigten nun eine durch Nullpunkttransformation erzeugte zentrosymmetrische Struktur! Die Verfeinerung der azentrischen Struktur führte dementsprechend wegen der hohen Korrelationen zu keinem sinnvollen Ergebnis. Nachdem diese Atomlagen verfeinert worden waren, konnten auch die Wasserstoffatomlagen mit Hilfe der Differenz-Fourier-Synthese¹⁴) festgelegt werden.

Abb. 2. Räumliche Atomanordnung der Schwingungsellipsoide von N, N, N', N'-Tetramethylmonothiooxamid (3)

¹⁴⁾ W. R. Busing, K. O. Martin, H. A. Levy, R. D. Ellison, W. C. Hamilton, J. A. Ibers, C. K. Johnson und W. A. Thiessen, ORXFLS 3, a FORTRAN Crystallographic least squares program, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 1971.

Die weitere Verfeinerung¹⁵⁾ mittels anisotroper Temperaturfaktoren für alle Atome außer Wasserstoff und einer isotropen Extinktionskorrektur konvergierte auf die R-Werte 0.065 (2) und 0.057 (3). Die verfeinerten Atomparameter sind in den Tabb. 1 und 2 zusammengestellt.

Abb. 1 und 2, gezeichnet durch das Programm ORTEP¹⁶⁾, stellen die räumliche Struktur der Moleküle dar. Die Ellipsoide der schwereren Atome begrenzen 30% der Aufenthaltswahrscheinlichkeit; der Maßstab der Wasserstoffatome ist willkürlich gewählt.

Die Bindungsabstände und -winkel sind mit Hilfe des Rechenprogramms ORFFE¹⁷, berechnet und aus Abb. 3 und 4 zu ersehen.

Diskussion der Molekül- und Kristallstrukturen von 2 und 3

Carbonsäureamide sind zwar in großer Zahl strukturanalytisch untersucht worden $^{18-22)}$. Viele Arbeiten sind jedoch älteren Datums und die mitgeteilten Daten entbehren der wünschenswerten Vollständigkeit, Genauigkeit und Zuverlässigkeit. Neuere Untersuchungen auf diesem Gebiet sind selten unter systematischen Aspekten durchgeführt worden, und es gibt nur sporadische Angaben über N, N-disubstituierte Amide. Es ist daher nicht ganz einfach, die Strukturen von 2 und 3 mit verwandten Verbindungen

- ¹⁹⁾ L. E. Sutton, Tables of Interatomic Distances, Supplement 1956-1959, The Chemical Society, London.
- ²⁰⁾ A. E. Jungk und G. M. J. Schmidt, Chem. Ber. 104, 3289 (1971).
- ²¹⁾ R. P. Shibaeva und L. O. Atovmyan, J. Struct. Chem. 9, 73 (1968); Zh. Strukt. Khim. 9, 90 (1968) [C. A. 68, 117817 (1968)].
- ²²⁾ M. B. Robin, F. A. Bovey und H. Basch, in The Chemistry of Amides (Herausgeber: J. Zabicky), S. 1, Interscience Publ., London, New York, Sydney, Toronto 1970.

¹⁵⁾ Atomstreufaktoren des C- und O-Atoms wurden aus der Arbeit von H. P. Hanson, F. Herman, J. D. Lea und S. Skillman, Acta Crystallogr. 17, 1040 (1964), die des H-Atoms der Arbeit von R. F. Stewart, E. R. Davidson und W. T. Simpson, J. Chem. Phys. 42, 3175 (1965), entnommen.

¹⁶⁾ C. K. Johnson, ORTEP: ORNL-3794, revised, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 1966.

¹⁷¹ W. R. Busing, K. O. Martin, H. A. Levy, G. M. Brown, C. K. Johnson und W. A. Thiessen, ORFFE 3, Oak Ridge, National Laboratory, Oak Ridge, Tennessee, USA 1971.

¹⁸⁾ D. R. Davies und R. A. Pasternak, Acta Crystallogr. 9, 334 (1956).

H ₂ N-CO-CO-NH ₂ 1.542 1.315 1.243 - 125.2 119.5 0 MeNH-CO-CO-NHMe 1.544 1.314 1.221 1.449 125.2 119.5 0 Z 1.530 1.319 1.228 1.449 125.4 117.8 71.4 A 1.51 1.319 1.228 1.466 124.1 117.8 71.4 A 1.51 1.37 1.35 1.254 119.7 455 F 1.510 1.360 1.235 1.469 122.1 120.6 84.1 H ₂ N-CS-CS-NH ₂ ¹ 1.537 1.336 1.665 - 124.6 120.6 84.1 Me ₂ CHNH-CS-CS-NHCMe ₂ 1.531 1.660 1.470 120.5 119.7 455 Me ₂ CHNH-CS-CS-NHCHMe ₂ 1.531 1.660 1.470 125.4 119.6 0 Me ₂ CHNH-CS-CS-NHCHMe ₂ 1.514 1.316 1.660 1.470 125.5 121.3 0 Me ₂ CHNH-CS-CS-NHCHMe ₂ 1.518 1.316 1.660 1.470 126.9 118.3	² N - CO - CO - NH ₂ 1.542 eNH - CO - CO - NHMe 1.544	1.315	1.243	ŀ	125.2	119.5	0	
MeNH-CO-CO-NHMe 1.544 1.324 1.227 1.449 125.4 121.4 0 2 1.530 1.319 1.228 1.456 124.1 117.8 71.4 4 1.51 1.31 1.22 1.52 1.52 1.17.5 119.7 455 5 1.51 1.37 1.25 1.52 1.75 119.7 455 $H_2N-CS-CS-NH_2^0$ 1.510 1.360 1.235 1.469 122.1 120.6 84.1 $H_2N-CS-CS-NH_2^0$ 1.537 1.336 1.665 - 124.6 12.3 0 $Me_2CHNH-CS-CS-NHCHMe_2$ 1.531 1.633 - 124.6 120.6 84.1 $Me_2CHNH-CS-CS-NHCHMe_2$ 1.514 1.633 - 124.6 120.5 0 $Me_2CHNH-CS-CS-NHCHMe_2$ 1.518 1.660 1.472 125.5 121.3 0 $Me_2CHNH-CS-CS-NHCHMe_2$ 1.518 1.316 1.650 1.472 125.5 121.3 0	eNH - CO - CO - NHMe 1.544							
2 1,530 1,319 1,228 1,456 124.1 117.8 71.4 4 1,51 1,37 1,25 1,52 1,52 117.5 119.7 455 5 1,51 1,37 1,25 1,52 1,52 117.5 119.7 455 71.4 5 1,510 1,360 1,360 1,235 1469 122.1 120.6 84.1 $H_2N-CS-CS-NH_2^{0}$ 1,537 1,336 1,663 - 124.6 120.6 84.1 $M_{e2}CHNH-CS-CS-NHCHMe_{2}$ 1,531 1,633 - 124.6 120.6 84.1 $Me_{2}CHNH-CS-CS-NHCHMe_{2}$ 1,518 1,316 1,633 - 124.6 120.5 121.3 0 $Me_{2}CHNH-CS-CS-NHCHMe_{2}$ 1,518 1,316 1,650 1,472 125.5 121.3 0 $Me_{2}CHNH-CS-CS-NHCHMe_{2}$ 1,518 1,316 1,650 1,472 125.5 121.3 0 1 1 1,516	220 T	1.324	1.227	1.449	125.4	121.4	0	
4 1.51 1.37 1.25 1.52 1.17.5 119.7 45.5 5 1.51 1.360 1.360 1.335 1.469 122.1 120.6 84.1 $H_2N-CS-CS-NH_2^{0}$ 1.537 1.336 1.665 - 1 25.4 119.6 0 $M_{e_2}CHNH-CS-CS-NHCHMe_2$ 1.537 1.336 1.665 - 124.6 120.5 0 $Me_{z}CHNH-CS-CS-NHCHMe_2$ 1.518 1.314 1.660 1.472 125.5 121.3 0 $Me_{z}CHNH-CS-CS-NHCHMe_{z}$ 1.518 1.316 1.660 1.472 125.5 121.3 0 $Me_{z}CHNH-CS-CS-NHCHMe_{z}$ 1.518 1.316 1.670 1.472 125.5 121.3 0 $Me_{z}CHNH-CS-CS-NHCHMe_{z}$ 1.510 1.314 1.650 1.472 125.5 121.3 0 $Me_{z}CHNH-CS-CS-NHCHMe_{z}$ 1.510 1.314 1.225 1.469 126.9 116.1 3 1.510 1.316	0EC.1 2	1.319	1.228	1.456 1.464	124.1	117.8	71.4	
5 1.510 1.360 1.235 1.469 122.1 120.6 84.1 $H_2N-CS-CS-NH_2^{10}$ 1.537 1.336 1.665 - 124.6 120.5 84.1 $M_{e_2}CHNH-CS-CS-NHL_{e_2}^{10}$ 1.537 1.331 1.633 - 124.6 120.5 0 $M_{e_2}CHNH-CS-CS-NHCHMe_2$ 1.547 1.314 1.660 1.472 125.5 121.3 0 $M_{e_2}CHNH-CS-CS-NHCHMe_2$ 1.518 1.316 1.660 1.472 125.5 121.3 0 $M_{e_2}CHNH-CS-CS-NHCHMe_2$ 1.518 1.316 1.672 1.470 126.9 118.3 86.9 $M_{e_2}CHM_{e_2}CS-NMe_2$ 1.510 1.334 1.225 1.470 126.9 116.1 87.4 3 1.510 1.334 1.225 1.464 125.8 117.2 $C_{6}H_{s}-CS-NMe_{z}$ 1.487 1.316 1.671 1.462 120.0 87.4	4 1.51	1.37	1.25	1.52 1.54	117.5	119.7	45.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 1.510	1.360	1.235	1.469 1.470	122.1	120.6	84.1	
	$_{\rm N}^{\rm N}$ – CS – CS – NH $_{\rm 2}^{\rm fl}$ 1.537 1.537	1.336 1.331	1.665 1.633	11	125.4 124.6	119.6 120.5	0	
I 1.518 1.316 1.660 1.469 126.1 118.3 86.9 3 1.510 1.310 1.672 1.470 126.9 116.1 3 1.510 1.334 1.225 1.458* 124.4 118.0 87.4 $C_6H_5-CS-NMe_2$ 1.487 1.316 1.671 1.462 125.8 117.2	e_2 CHNH – CS – CS – NHCHM e_2 1.547	1.314	1.660	1.472	125.5	121.3	0	
3 1.510 1.334 1.225 1.458 ^s 124.4 118.0 874 1.319 1.670 1.464 125.8 117.2 C ₆ H ₅ -CS-NMe ₂ 1.487 1.316 1.671 1.462 124.0 118.0 62.6	I 1.518	1.316 1.310	1.660 1.672	1.469 1.470	126.1 126.9	118.3 116.1	86.9	
C ₆ H ₅ -CS-NMe ₂ 1.487 1.316 1.671 1.462 124.0 118.0 62.6	3 1.510	1.334 1.319	1.225 1.670	1.458 ⁸⁾ 1.464	124.4 125.8	118.0 117.2	87.4	
	H ₅ -CS-NMe ₂ 1.487	1.316	1.671	1.462	124.0	118.0	62.6	

zu vergleichen, um Besonderheiten in den Bindungsverhältnissen herauszufinden. Auf einige Punkte, die sich aus der Datenzusammenstellung in Tab. 3 ergeben, sei jedoch hingewiesen.

Die Länge der zentralen C-C-Bindung beträgt bei 2 1.530 Å. Dies ist im Zusammenhang zu sehen mit der von Brown und Harcourt berechneten antibindenden Wechselwirkung zwischen den beiden Hälften eines ebenen Y_2X-XY_2 -Moleküls (Y = Atom mit freien Elektronenpaaren)²⁴⁾, die zur Erhöhung des X-X-Abstandes gegenüber dem normalerweise für aneinander gebundene, sp²-hybridisierte Atome gefundenen Wert (bei C-Atomen ca. 1.47-1.52 Å) führt. Insofern ist 2 ein reguläres Glied der Oxalsäurereihe, in der meist C-C-Abstände >1.52 Å zu beobachten sind^{1, 2)}. Dagegen weist 3 mit d(C-C) = 1.510 Å den gleichen Abstand wie die N,N-disubstituierten Benzamide 4 und 5 auf (Tab. 3).

Als Ursache kann die nahezu vollkommen senkrechte Anordnung der Molekülhälften in 3 (Verdrillungswinkel $\Theta = 87.4^{\circ}$) angesehen werden, in der die antibindende Wechselwirkung²⁴⁾ nicht auftritt, wenngleich 2 ebenfalls erheblich tordiert ist ($\Theta = 71.4^{\circ}$). Die Verdrillung ist auf die sterische Behinderung zurückzuführen, der ein ebenes, tetrasubstitutiertes Oxamid-Gerüst ausgesetzt ist, wobei der Effekt in 3 sowie auch in 1 wegen der Anwesenheit des großen Schwefelatoms ausgeprägter ist als in 2.

Diese Befunde bestätigen die Ergebnisse, die an Lösungen erhalten wurden. Dipolmoment-²⁵⁾, UV-²⁶⁾ und EPR-spektroskopische^{9,10)} Messungen an 2 und 3 bzw. ihren Radikalanionen sowie die Temperaturabhängigkeit der NMR-Spektren von N, N, N', N'-Tetrabenzyloxamid und -monothiooxamid²⁷⁾ zeigen deutlich, daß diese Verbindungen ein weit vom koplanaren Bau abweichendes Molekülgerüst mit Torsionswinkeln $\Theta > 60^{\circ}$ aufweisen.

Die Amid- bzw. Thioamidgruppen selbst sind dagegen bei 2 und 3 fast eben gebaut. So beträgt in 3 der Winkel zwischen den Ebenen C3-C4-N1-C1 und S-C1-C2-N1(Abb. 4) nur 2.7° sowie der zwischen C5-C6-N2-C2 und O-C2-C1-N2 3.5°; während z. B. für die entsprechenden Winkel in 5²⁰⁾ und N, N-Dimethylthiobenzamid²³⁾ 7° gefunden wurden.

Die Bindungslängen und -winkel weisen keine signifikanten Abweichungen gegenüber anderen Oxamiden und Thiooxamiden auf, und die beiden "ungleichen Hälften" in 3, welches das erste strukturanalytisch untersuchte *Monothiooxamid* ist, zeigen die normalen Bindungsparameter (vgl. Tab. 3). Lediglich die Winkel zwischen der zentralen C-Cund der C=X-Bindung (\leq CCX in Tab. 3) liegen bei den hochsubstituierten Verbin-

²⁴⁾ R. D. Brown und R. D. Harcourt, Aust. J. Chem. 16, 737 (1963).

²⁵⁾ J. Chavigny de Lachevrotière, J. Sandström und H. Lumbroso, C. R. Acad. Sci., Ser. C 276, 1143 (1973).

²⁶ B. Persson und J. Sandström, Acta Chem. Scand. 18, 1059 (1964).

²⁷⁾ R. E. Carter und J. Sandström, J. Phys. Chem. 76, 642 (1972).

dungen 1-3 um ca. 2° unter dem Standardwert für ungestörte Systeme. – Im Vergleich zu Benzamiden wie 4, 5 u. a. ^{19, 22)} haben Oxamide deutlich verkürzte C-N-Bindungen (erhöhten C-N-Doppelbindungscharakter); 2 und 3 bilden hierin keine Ausnahme.

Die Moleküle von 3 bilden in der Ebene (100) eine AB-Schichtfolge (Abb. 6), während sich die AB-Schichtfolgen in der Kristallstruktur von 2 in zwei Richtungen, (001) und (110), erstrecken (Abb. 5).

Ein Vergleich der Elementarzellen (Atome pro Volumeneinheit) zeigt, daß die Packung der Moleküle im Kristall bei 2 und 3 nicht so dicht ist wie die von N, N'-Dimethyloxamid⁴) und N, N'-Diisopropyldithiooxamid⁶).

Dies ist sicher auf die sperrige, verdrillte Struktur der 2- und 3-Moleküle sowie das Fehlen intramolekularer Wasserstoffbrückenbindungen zurückzuführen (vgl. Abb. 5 und 6).

Abb. 5. Projektion der Kristallstruktur von 2 in b-Richtung

Abb. 6. Projektion der Kristallstruktur von 3 in b-Richtung

[281/76]